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FINE-SCALE MIXING IN A GAS-FLUIDIZED BED OF FINE PARTICLES 

Yu. A. Buevich, V. N. Varygin, 
and E. N. Prozorov 

UDC 532.545 

The coefficients of diffusion of the particles and gas in the dense phase of a 
fluidized bed and the mean squares of the components of their pulsation velocity 
are analyzed with direct particle collisions neglected. 

The particles and the fluidizing medium in a homogeneous fluidized bed or the dense 
phase of an inhomogeneous bed undergo intense chaotic ("pseudoturbulent") motions, the pre- 
sence of which leads to the fact that the effective values of the transfer coefficients in 
the dense phase usually far exceed the values of the corresponding coefficients for the 
homogeneous materials of the phases. Although in actual inhomogeneous systems the role of 
such fine-scale mixing can be insignificant within the limits of the bed as a whole compared 
with the role of the mixing due to the circulation of the phases and bubbling (see [I], for 
example), it is important precisely for the determination of such quantities as the average 
time the particles remain near the surface of bodies submerged in the bed and in contact with 
elements of the dense phase ("packets") and the intensity of particle exchange between the 
surface zone and the cores of packets. 

In particular, the latter quantities determine the intensity of heat exchange between 
the bed and a submerged surface, and knowledge of their dependence on the operating and 
physical parameters is entirely necessary for the generalization and further development of 
the existing particular models of external heat exchange in a fluidized bed [2]. And the 
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kinetics of some of the more specific processes carried out in a fluidized bed, such as the 
process of removal of the process binder from ceramic articles obtained by the hot-castlng 
method in a fluidlzed bed of porous particles through capillary impregnation of particles 
during their contact with the surface of an article, depends on the same quantities [3, 4]. 
Similarly, pseudoturbulent pulsations of the fluidizing medium must affect the values of the 
effective coefficients of dispersion of an impurity in the dense phase, which seriously in- 
fluence the mass exchange between the bed and bodies bathed by it [5-7] and the intensity 
of gas exchange between the dense phase and rising bubbles [i, 5], determining the produc- 
tivity of catalytic reactors. 

The average characteristics of the pseudoturbulent motion in a fluidized bed can be 
found by treating the pulsations of the velocities of the phases, the porosity, and the 
pressure as steady random functions of time and the coordinates and by using the well-known 
methods of the correlation theory of steady random processes [8] and the general theory of 
pseusoturbulence, a survey of which is presented in [9]. The concrete calculations in [9] 
were made in application to a bed of fine particles fluldized by a liquid, and semiemplrlcal 
representations were used for the equations of motion of the phases and the force of inter- 
phase interaction in which a term proportional to the pressure gradient was incorporated 
without foundation (see [I0], for example). More rigorous results involving the description 
of the motion of the liquid phase of the disperse medium and the interaction between phases 
obtained in [ii] were used in that report. 

Below we consider only beds fluidized by a gas, when it is permissible to neglect the 
inertia of the gas and the viscous stresses in it in a first approximation. We assume that 
the particles are fine enough so that the influence of their direct collisions on the ex- 
change of momentum and energy can be neglected, assuming that their interaction takes place 
predominantly by means of the random fields of velocity and pressure in the gas. The same 
assumption was adopted in [9]; the opposite situation, when collisions dominate in the ex- 
change of momentum and energy, was investigated in [12]. 

On the basis of [ii], under the indicated assumptions, the equations of conservation of 
momentum and mass of the gas, which we assume to be incompressible, the equations of particle 
motion in the dense phase can be written in the form 

a~ + ~ (av) = O, 0 = ap ~, 
& ar ar 

diP +w oh" w l d,pg, p=l--~, 

( l )  

with a term containing the pressure gradient not having to be introduced in the force f of 
interaction of the phases per unit volume of the mixture. Using Ergun's well-known two-term 
equation [13], approximately correct when p ~ 0.3, we write 

f = 4p O~,K, + ~,K~u)., u = v-- w, 

where we introduce the quantities 

(2) 

~i = 75 vo 1,75 , Ki  (P) P /(2 (p) I 
2 a2' ~= 2= •, ~ (3) 

In [9] a term containing the pressure gradient was introduced into the expression for f, 
which led to the fact that the functions K, and Ka in [9] analogous to those in (3) were e-* 
times smaller than the latter. 

Each of the unknowns in (i) and (2) can be represented in the form of the sum of its 
average value and of the pulsation about the average in accordance with the equation ~ = 
<~> + ~ ' Using the local convective coordinate system x connected with the average parti- 
cle motlon, and linearizing Eqs. (i) and (2) in this system, we obtain a system of linear 
equations for the pulsations. Representing all the pulsations in the form of Fourler-- Stielt- 
jes integrals [8, 9] 
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q~' = S exp [i (cot + kx)l dZ~, 
we have the following system of equations for the spectral measures: 

(o~ + < u > k) dZ,  - -  ( e > kdZv = O, - -  ikdZ r, - -  dZ I = O, 

i d , ( p ) o ~ d Z w = d Z r  (u>=<v>--(w>, (p>=l--(e>, 

(4) 

(5) 

and for the spectral measure dZf we obtain from (2) 

dZ~ = 4 < P ) I(PlKt + ~K2 < u > ) dZ~ + P2K2( < u > dZ~) < u > / < u > 
(6) 

+ (~,K~ + ~K~ < u > ) < u > aZ~l, az~ = azo-- dZ~, 

where the prime to K] (j = I, 2) denotes differentiation with respect to <p>. 

The average quantities (5) and (6) satisfy the equations obtained from (i) and (2) after 
averaging, as well as the equation of conservation of mass of the disperse phase; henceforth 
they are treated as known. In general these quantities describe the local state of a bed or 
its dense phase occuring when the bed flows over obstacles, when bubbles move in it, etc. 
In a particular case they can also describe an idealized homogeneous state whose character- 
istics do not depend on the coordinates. In this case the local coordinate system practically 
coincides with the laboratory system, and the average relative gas velocity <u> = U = Uf/ 
<r is directed upward and can be calculated from the condition of equality of the hydraulic 
forces acting on the particles to their weight minus the buoyant force (which can be neglected 
for fluidizatlon by a gas). Below we will use the approximate equation 

U = .  xg  - •  ( P >  
~iKt + ~zKzU 13xKt < ~ > +0 .0233  Re 

Re aUt di 
~ 0  d o 

(7) 

corresponding to Ergun's equation [13], in which we neglect the difference between the resis- 
tance of a fluidlzed bed and that of a stationary bed of the same particles due to the pseudo- 
turbulent motions (see [9], as well as [14]). 

Equations (5) and (6) allow us to express all the spectral measures through the measure 
dZp of pulsation of the volumetric concentration of particles. Defining the spectral density 
of the random functions @' and 4' in the standard way [8], 

~ , , , ( ~ ,  k) = < dZ~dZ~ >/d~dk,  (8) 

we express all the spectral densities of interest through the spectral density of the quan- 
tity p', for which we have [15] 

~ p , p  (o), k) : i 

Op,p(k)= {0~ ,' 

kDk (Do, o (k) To : tr D , 

rc o~ z + (kDk - -  To~o2) 2 ' < w '~ > 

k < k o , ,  . _  3 <p>z  ( ( p ~ )  
k > k o  4--V 1 , 

k o =  1 (9 :n  <O> ) '!3 
- -  t 
a 2 

(9) 

This expression allows us to close the theory being developed. The various spatial and 
temporal correlation functions can then be obtained by the standard methods. In such a case 
[8] 

( (p' (t, x) •' (t + x, x + [) > : ~; exp [-- i (OT + k~)] W,~., (o), k) do~dk. (10) 
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Below we investigate only the simplest average characteristics of the pseudoturbulent motion 
with �9 = 0 and r = 0. To simplify the writing we henceforth omit the angle brackets in the 
designations of the average quantities. 

If the x, axis of the coordinate system is directed along the vector u, then the tensors 
D and E of the coefficients of pseudoturbulent diffusion of particles and gas are diagonal 
ones, with D2 = Ds and E2 = Es [9]. For the formal representation of Dj and Ej (j = i, 2) 
through the corresponding diagonal elements of the Lagrangian correlation tensor of the vel- 
ocity of the particles or fluid we use the well-developed theory of the dispersion of fluid 
moles in a turbulent field, according to which the mean square of the displacement of a mole 
in the J-th direction over a time far exceeding the correlation "lifetime" can be described 
as the result of a random process of the diffusional type [16-18]. Then for the coefficients 
of dlffusion of particles and gas we have 

DI = JR} m(:)d~, E,= RI "~(~)d~. (l:) 
0 0 

In the coordinate system under consideration the Lagrangian correlation functions for 
the components of the particle pulsation velocity coincide with the Eulerian functions within 
the limits of the adopted accuracy; for a gas the analogous circumstance holds in the local 
coordinate system connected with the average gas motion, i.e., one moving with a velocity u 
relative to the system under consideration. We can change to such a system if we replace 
the frequency m by the quantity m -- u k in all the equations obtained in the coordinate sys- 
tem under consideration. Consequently, we can write 

R} m ('r) = .I j" exp (-- i(o" 0 ~ i .  -i f~, k) do)dk, 

R}mvr) = j'.f exp(--io)~)uZoz, oi(o)--uk, k)&odk, 

(12) 

where the integration extends over the range of variation of the frequency ~ of from --= to 
| and over all wave space k. Changing the order of integration over dr and dm in (ii) with 
allowance for (12) and using the definition of the delta function in the form of a Fourier 
integral, we obtain 

oj = ~ ~" v~,., ~ m, kj dk, e~ = :~ j"l'o~,, (--  ,k, k) dk. ( : 3 )  

Solving the system (5) with dZf from (6) in the general case of ~ # 0, for the vectors 
of the spectral measures of the pulsation velocities of particles and gas we have 

"-c [l~ 2 u ..s_ ktdZf, ' dZw~ = --d r + ukt 1 + e fitKt + ~K2u le2 + ixo~ PtK, + 2fi.,K~u ' PtK~ + poK~u (14) 

dZo~ = {[i• + [~,K, + (1 + 5u) [~K2u] dZwj - -  (~,K [ + [~2K~u) u6,jdZo} I~,K, + {1 + 6,j) [~2K~ul-'. (15) 

From this it is easy to find the spectral densities figuring in (12) and 
from (14) we obtain 

U2'~l.w/(~, k )=  k~e 2 o~--[-uki 1 + e  ~IKi-+-~K~u X 

{ [ k2 . k2_k~ ]2}-, 
X k~+• z ~tK~+2f52K~u ~lKl+~2K=u ~p,p(c0, k), 

First of all we find the longitudinal and transverse coefficients of 
Using Eqs. 
find 

(13). For example, 

(16) 

particle diffusion. 
(9) and (16) with ~ = 0 in (13) and calculating the integrals which appear, we 

Dj ---- ~- (I + 8u) I-- I + s _ p= P,KI'+P,K,u J k - - ~  b(~), (:7) 
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where we introduce the notation 

1 1 

D ~ '  . t z _q_ ?z ' lz (?) = t ~ 71_ 73 
o o 

(18) 

From (1.7) and (18) we obtain the transcendental equation 

the only root of which is y ~0.85. 
introducing the quantities 

27Zl~ (?) = (1 -k- ~D I~ (?), (19) 

Using this value of y and the definitions in (3) ,  and 

u! = eu, D =  auj ,  Re = auffVo, (20) 

for the dimensionless coefficients of longitudinal and transverse pseudoturbulent diffusion 
of particles we obtain from (17) 

D[ = Dt 4 * - D - ~ 2 .  D2 , (21) 

D ~ ' 0 " 3 2 ~ k l - - ~ P  1 + 2 9 + 0 . 0 4 6 6 R e  
Pm p-q-0.0233 Re 

Thus, the anisotropy of pseudoturbulent particle diffusion is expressed considerably 
more weakly for gas fluidization than for fluidization by a liquid [9], with the ratio of 
the coefficients of longitudinal and transverse diffusion not depending on the average poros- 
ity in the given case. The dependences of D~ on p = i -- a for 0m = 0.6 and different Re are 
presented in Fig. la; it is seen that these dependences have a single maximum. 

In the case when uf = Uf, i.e., Eqs. (21) describe the homogeneous state of a bed or of 
its dense phase, they are somewhat inconvenient in that the Reynolds number Re, defined in 
(7) or (20), increases with an increase in r and in the fluidization number N = Uf/Um. The 
quantity Re can take different values for a bed of the same particles in the same gas, while 
the corresponding values of D~ can lie on different curves of Fig. la. Therefore, it is 
convenient to introduce a new Reynolds number Rem = Re/N, defined at the moment of the start 
of fluidization and representing a unique function of the physical parameters of the phases 
of the bed. 

The hydraulic resistance of a granular bed in the fluidized state does not depend on N, 
and for different p and U (or N) it is described by the same analytical expression: Ergun's 
equation, e.g., which leads to (7). From this we obtain the following connection between 
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Fig. 2. Dependence of volumetric parti- 
cle concentration p of the dense phase in 
the homogeneous state of a bed on fluidiza- 
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D=, cma/sec. 

the values of the fluidization number and the average volumetric particle concentration with 
Re m = const: 

N : ( _ _ ~ m  )3 pm -}- O,O233 Rem , Rem ~. aUra 
p q- 0,0233N Rein v--'~ (22) 

This dependence of N on P is shown in Fig 2a. 

In place of (21) we can write 

D ~ �9 l m =  Di/Dm ,~ 2.4D~'m, Dm = aUra, (23) 
p~/3 / ),/2 D* D2 ,~0,32 1 P 1 +2p-q--O.O466NRem N 

where p and N are connected by Eq. (22). Equations (23) determine the dependences of the 
new dimensionless coefficients of particle diffusion on p (or N) for a fixed Ram, i.e., for 
a bed of the given particles. Such dependences are plotted in Fig. lb. 

A comparison between the theoretical results obtained and test data is hindered by the 
fact that with fluidization by gases we are usually dealing with inhomogeneous beds in which 
the average porosity of the dense phase is unknown. However, there are experiments on the 
determination of the coefficient of transverse particle diffusion in relatively shallow, 
finely dispersed beds, in which an inhomogeneous state is simply unable to become estab- 
lished, so that the volumetric fraction of bubbles is small, the bubbles themselves are 
small, and the transverse mixing caused by them does not play a significant role. The re- 
sults of tests of this type carried out in [19] on beds of quartz sand particles are shown 
in Fig. 2b; the theoretical curves are constructed on the basis of Eqs. (22) and (23); the 
corresponding values of p (or of the porosity e) are easily found from the curves of Fig. 2a. 
The agreement between the theoretical and experimental data appears satisfactory; a certain 
systematic difference between them is evidently connected with ignoring the influence of 
bubbles. 

The determination of the mean squares of the components of the pulsation velocity of 
particles in accordance with Eq. (I0) is associated with very cumbersome and laborious cal- 
culations. To simplify them we note that the characteristic scale ml of variation of the 
spectral density in (9), treated as a function of m, has the order u/a, whereas the analo- 
gous scale m= of the denominator in (16) has the order of the quantity z-x(~IK I + B=K=u). 
Using (3) and the definition of Re in (20), for fluidization by a gas we obtain 
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to_i_2 ~, 75 p 1 +O,0233Re/p ,-,. ,5.10 -z 1 + O.0233Re/p (24) 
% 2 e xRe  Re .. 

Obviously, toa/uJx <<i if Re'>~0.5, i.e., for almost all the situations of interest. 

Using the estimate (24) in the integration of the quantity (16) over d~ and neglecting 

terms of order ~2/~,, we find 

1 (1 @ 29 + 0.0466 Re) a 
@~i,  wi(k) = ~Fwi, ~i (o~, k)dr Pe ~ p+O.O233Re X (25) 

X 
• k~ [ k ~  + o j ' p + 0.0466Re k~ kDk 

Then integrating over dk and using the expressions in (3), (9), and (21), after the calcula- 
tions we have 

{ ~'* p21S ( 
i. ) ~ 3 0 ( 1 + 6 i . i ) ~  1 - - - -  

p )~/2 1 + 2 p - F 0 . 0 4 6 6 R e j i  
p~ •  (% a) u~, ( 2 6 )  

where 

( 2 7 )  
= 0.0233 Re (p 4- 0.0466 Re) -l, 7 = 0.85, 

! 1 
f t~dt ~ t2 ( l_ t3)d t  

J, (7, a) = (t217 ~ + I) (1 - -  at 2) ' ~ (?' a) = , ( t ~  + l) (1 - -  at 9 " 
0 0 

The quantity <wx'* > /(w2'*> as a function of 0 and Re is shown in Fig. 3, from which 
it is seen that it depends slightly on its arguments. The curves of Fig. 3 indicate that 
the anisotropy is far more weakly expressed for fluidization by a:gas than for fluldizatlon 

- by a liquid [9]. The dependences of the dimensionless quantity - <w=' /u~ on p for dif- 
ferent Re in application to the fluidization of aluminum oxide particles (• = 1.85 �9 I0 s) by 
air are presented in Fig. 4a. The deficiencies of these curves are that, first, they are 
constructed with Re = const, while Re varies with the variation of the fluldizatlon condi- 
tions, and second, they depend on the quantity ~, which varies with variation of the physi- 
cal parameters. In the case when we are dealing with pulsations in a homogeneous bed, these 
deficiencies can be removed by introducing the criterion Rem and the dependence of N on O in 
accordance with (22) and the curves in Fig. 2a. In this case Eq. (26) is converted to the 
form 

�9 ~ 0 2 / 3 (  1 ~,i2 (w/  ) ~ 0 . 8 ( 1  + ~ u ) - - - ~  1 - -  ~ P  1 + 2 9  +0 ,0466NRe~ 
�9 P,n . p @ 0.0233NRem Ji(~, a)ag,  (28) 

where u and J~ are defined asbefore by Eqs. (27) with Re = NRem. The dependence of the 
J �9 ~ 2  dimensionless quantlty W2m - w='=~/ag on 0 for different Reln is shown in Fig. 4b. Thus, -< 

the dimensional quantity characterizing the intensity of pseudoturbulent particle pulsations 
is essentially the quantity ag. 

�9 . . " . = "." . . �9 .''" . " . . . " = " " j- 

of integrals which follow from (i0) and (13). Such calculation is very cumbersome; as an 
example here we obtain only an approximate equation for the coefficient of transverse gas 
diffusion. 

In the approximation of ~a ~ ~t (see (24)), from (15) and (16) we obtain 

(29) 
J k S /  \ 

525 



<Z~ -) " 

> Re=1 
3 

2,~5 

 ..20 
1oo 

Fig. 3 

Fig. 3. The ratio <w,'2> 

Fig. 4 

/<w2'2>as a function of 0 and Re. 

Fig. 4. Dependences on O of the dimensionless quantities w~ 2 for 
a bed of aluminum oxide particles with M ffi 1.85 �9 i0' (a) and w~ 
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It is easy to show that in calculating t~e integral (13) of this quantity it is permissible 
to replace the denominator in Eq. (9) by ~2 = (uk)2 with an error not very large. After 
the calculation we obtain 

p8/3 
f - I -  E, ~ 0.05 ----j- 

p )3/2( l-~pq-0.0233Re )2 I+2p+0.0466Re 
Pm p + 0.0233 Re p q- 0.0233 Re L (?, =) D, 

I 
L (%,, ~) = [ (1 - -  F) (F /~  -b 1) dr. 

�9 (1 _ _ ~ ) z  
o 

(30) 

From this it follows, in particular, that transverse gas diffusion is far weaker than trans- 
verse particle diffusion. Such a result can also be obtained for longitudinal diffusion, as 
well as for the pulsation intensity. 

In conclusion, we note that the application of these results in practical estimates 
and calculations is greatly hindered by the absence of detailed information about the aver- 
age porosity of the dense phase in the essentially inhomogeneous fluidized beds which are 
usually used. Without going into detail, we can state that it can now be considered as 
solidly established that actual beds depart considerably from the demands dictated by the 
two-phase theory of fluidization, i.e., the indicated porosity departs seriously from r m. 
However, the existing experimental material (see [20], for example) is not sufficient to 
draw definite conclusions about the character of the dependence of this quantity on the 
physical and operating parameters of a bed under different conditions. It is clear that 
the theoretical and experimental determination of this dependence represents one of the 
central problems of the physical mechanics of fluidization. 

NOTATION 

a, particle radius; Dj and Ej, coefficients of pseudoturbulent diffusion of particles 
and gas; D, quantity introduced in (20); d, density; f, force of interphas'e interaction; g, 
acceleration of gravity; lj, J~, L, integrals in (18), (27), and (30); K i, functions intro- 
duced in (3); k, wave vector; ~o, value of wave number defined in (9); l~, mixing lengths 
for particles; N, fluidization number; p, pressure; R~P), Rj(g), Lagrang~an correlation func- 
tions for particles and gas; To, parameter in (9); U~ Uf, average relative gas velocities, 
referred to the free through cross section and the total cross section of the apparatus for 
a homogeneous state of the bed; Um, minimum fluldization velocity; u, uf, average relative 
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gas velocity and average filtration velocity; v, w, average velocities of gas and particles; 
dZ@, designation for spectral measures; a, parameter introduced in (27); 8", coefficients 3 
defined in (3); y, parameter in (18); c, porosity;~ = dl/do; ~, kinematic viscosity; ~, volu- 
metric particle concentration; ~,~, ~o,~, designations for spectral densities; ~, parameter 
in (9); ~, frequency; Re, Rem, Reynoldw numbers introduced through velocities uf (or Uf) and 
U m. Indices: 0 and i, continuous and discrete phases, respectively~ m, state of minimum 
fluidization; upper prime, pulsation quantities, as well as differentiation of Kj with re- 
spect to p; upper asterisk, dimensionless quantities. 
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